\documentclass[12pt,a4paper,german]{article} \usepackage{url} %\usepackage{graphics} \usepackage{times} \usepackage[T1]{fontenc} \usepackage{ngerman} \usepackage{float} \usepackage{diagbox} \usepackage[utf8]{inputenc} \usepackage{geometry} \usepackage{amsfonts} \usepackage{amsmath} \usepackage{cancel} \usepackage{wasysym} \usepackage{csquotes} \usepackage{graphicx} \usepackage{epsfig} \usepackage{paralist} \usepackage{tikz} \geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm} %%%%%%%%%% Fill out the the definitions %%%%%%%%% \def \name {Valentin Brandl} % \def \matrikel {108018274494} % \def \pname {Marvin Herrmann} % \def \pmatrikel {108018265436} % \def \gruppe {2 (Mi 10-12 Andre)} \def \qname {Pascal Brackmann} \def \qmatrikel {108017113834} % \def \uebung {11} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DO NOT MODIFY THIS HEADER \newcommand{\hwsol}{ \vspace*{-2cm} \noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\ \noindent \pmatrikel \quad \pname \\ \noindent \qmatrikel \quad \qname \\ \begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center} } \begin{document} %Import header \hwsol \section*{Aufgabe 11.1} \begin{enumerate}[1.] \item Sei $p$ prim: \begin{align*} (a + b)^p &\equiv a^p + b^p &\mod p \end{align*} \begin{align*} (a + b)^p &\equiv \sum\limits^p_{k=0} \binom{p}{k} a^k b^{p-k} &\mod p \\ &\equiv a^p + b^p + \sum\limits^{p-1}_{k=1} \binom{p}{k} a^k b^{p-k} &\mod p \\ * &\equiv a^p + b^p &\mod p \end{align*} $*$: $\binom{p}{k} = p * \frac{(p-1)!}{k!(p-k)!}$ $p$ prim $\Rightarrow$ $ggT(k!(p-k!), p) = 1$ $\Rightarrow$ $\frac{(p-1)!}{k!(p-k)!} \in \mathbb{Z}_p$ $\Rightarrow$ $p | \binom{k}{p}$ für $1 \leq k \leq p-1$ $\Rightarrow$ $\sum\limits_{k=1}^{p-1} \binom{p}{k} a^k b^{p-k} \equiv 0 \mod p$ q.e.d. \item Sei $a,b \in \mathbb{N}, c = ggT(a,b)$ \begin{align*} \varphi(a * b) &= \varphi(a) * \varphi(b) * \frac{c}{\varphi(c)} \end{align*} Zu zeigen: $\varphi(a) * \varphi(b) = \varphi(ggT(a,b)) * \varphi(kgV(a,b))$ Seien $P'$ die gemeinsamen Primteiler von $a$ und $b$ und $A$ und $B$ die Mengen der disjunkten Primteiler von $a$ und $b$. \begin{align*} \varphi(a) * \varphi(b) &= \prod\limits_{p \in P'} p^{(a_p - 1)(b_p -1)} (p-1)^2 * \prod\limits_{p \in A} p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) \\ &= \prod\limits_{p \in P'} p^{(min(a_p,b_p)-1)(max(a_p,b_p)-1)} (p-1)^2 * \prod\limits_{p \in A} p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) \\ &= \prod\limits_{p \in P'} p^{min(a_p,b_p)-1} (p-q) * \left( \prod\limits_{p \in P'} p^{max(a_p,b_p)-1} (p-1) * \prod\limits_{p \in A} p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) \right) \\ &= \varphi(ggT(a,b)) * \varphi(kgV(a,b)) \\ \\ \varphi(a * b) &= \varphi(a) * \varphi(b) * \frac{c}{\varphi(c)} \\ &= \varphi(ggT(a,b)) * \varphi(kgV(a,b)) * \frac{ggT(a,b)}{\varphi(ggT(a,b))} \\ &= \varphi(kgV(a,b)) * ggT(a,b) \\ &= \prod\limits_{p \in P'} p^{max(a_p,b_p)-1} (p-1) * \prod\limits_{p \in A} p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) * \prod\limits_{p \in P'} p^{min(a_p,b_p)} \\ &= \prod\limits_{p \in P'} p^{(a_p+b_p-1)} (p-1) * \prod\limits_{p \in A} p^{a_p-1} (p-1) * \prod\limits_{p \in B} p^{b_p-1} (p-1) \\ &= \varphi(a*b) \end{align*} q.e.d. \end{enumerate} \end{document}