\documentclass[12pt,a4paper,german]{article} \usepackage{url} %\usepackage{graphics} \usepackage{times} \usepackage[T1]{fontenc} \usepackage{ngerman} \usepackage{float} \usepackage{diagbox} \usepackage[utf8]{inputenc} \usepackage{geometry} \usepackage{amsfonts} \usepackage{amsmath} \usepackage{csquotes} \usepackage{graphicx} \usepackage{epsfig} \usepackage{paralist} \geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm} %%%%%%%%%% Fill out the the definitions %%%%%%%%% \def \name {Valentin Brandl} % \def \matrikel {108018274494} % \def \pname {Marvin Herrmann} % \def \pmatrikel {108018265436} % \def \qname {Pascal Brackmann} \def \qmatrikel {108017113834} % \def \gruppe {2 (Mi 10-12 Andre)} \def \uebung {3} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DO NOT MODIFY THIS HEADER \newcommand{\hwsol}{ \vspace*{-2cm} \noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\ \noindent \pmatrikel \quad \pname \\ \noindent \qmatrikel \quad \qname \\ \begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center} } \begin{document} %Import header \hwsol \section*{Aufgabe 3.3} \begin{enumerate}[1.] \item \begin{eqnarray*} \ln n &= o(e^{\sqrt{\ln n}}) \\ \text{Anwendung des Satz von L'Hospital:} \\ \lim\limits_{x \to x_0} \frac{f(x)}{g(x)} &= \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)} \\ \Rightarrow &\lim\limits_{n \to \infty} \left( \frac{\frac{1}{n}}{e^{\sqrt{\ln(n)}} \frac{1}{2n\sqrt{\ln(n)}}} \right) \\ &= \lim\limits_{n \to \infty} \left( \frac{\frac{1}{n}n}{e^{\sqrt{\ln(n)}}\frac{n}{2n\sqrt{\ln(n)}}} \right) \\ &= \lim\limits_{n \to \infty} \left( \frac{1}{\frac{e^{\sqrt{\ln(n)}}}{2\sqrt{\ln(n)}}} \right) \\ &= \lim\limits_{n \to \infty} \frac{1}{\infty} \\ \end{eqnarray*} da $e^{\sqrt{\ln(n)}}$ schneller wächst als $2\sqrt{\ln(n)}$ $\Rightarrow \ln n = o(e^{\sqrt{\ln n}})$ \item \begin{eqnarray*} e^{\sqrt{\ln n}} &= o(n^{\varepsilon}) \text{ für alle } \varepsilon \in \mathbb{R}, \varepsilon > 0 \\ \lim\limits_{n \to \infty} \frac{e^{\sqrt{\ln n}}}{e^{\ln(n^{\varepsilon})}} = \lim\limits_{n \to \infty} \frac{e^{\sqrt{\ln n}}}{e^{\varepsilon \cdot \ln n}} = 0 \end{eqnarray*} Gilt für alle $\varepsilon > 0$, da $\ln n$ schneller wächst als $\sqrt{\ln n}$. $\Rightarrow e^{\sqrt{\ln n}} = o(n^{\varepsilon})$ \end{enumerate} \end{document}