\documentclass[12pt,a4paper,german]{article} \usepackage{url} %\usepackage{graphics} \usepackage{times} \usepackage[T1]{fontenc} \usepackage{ngerman} \usepackage{float} \usepackage{diagbox} \usepackage[utf8]{inputenc} \usepackage{geometry} \usepackage{amsfonts} \usepackage{amsmath} \usepackage{csquotes} \usepackage{graphicx} \usepackage{epsfig} \usepackage{paralist} \geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm} %%%%%%%%%% Fill out the the definitions %%%%%%%%% \def \name {Valentin Brandl} % \def \matrikel {108018274494} % \def \pname {Marvin Herrmann} % \def \pmatrikel {108018265436} % \def \gruppe {2 (Mi 10-12 Andre)} \def \uebung {2} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DO NOT MODIFY THIS HEADER \newcommand{\hwsol}{ \vspace*{-2cm} \noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\ \noindent \pmatrikel \quad \pname \\ \begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center} } \begin{document} %Import header \hwsol \section*{Aufgabe 2.1} \begin{enumerate}[1.] \item Kekse $\widehat{=}$ Bälle (unterscheidbar, da \enquote{verschieden}), Portionen $\widehat{=}$ Urnen (nicht unterscheidbar). $n = 9$, $k = 5$ Problem entspricht einer ungeordneten $k$-Mengenpartition, also $S_{n,k}$ \begin{eqnarray*} S_{n,k} &=& S_{n-1,k-1} + k * S_{n-1,k} \text{ mit} \\ S_{0,0} &=& 1 \\ S_{n,n} &=& 1 \\ S_{n,1} &=& 1 \\ S_{n,2} &=& 2^{n-1} - 1 \\ S_{n,3} &=& \frac{1}{2}(3^{n-1} - 2^n + 1) \\ S_{n,0} &=& 0 \\\\ S_{9,5} &=& S_{8,4} + 5 * S_{8,5} \\ &=& (S_{7,3} + 4 * S_{7,4}) + 5 * (S_{7,4} + 5 * S_{7,5}) \\ &=& ((S_{6,2} + 3 * S_{6.3}) + 4 * (S_{6,3} + 4 * S_{6,4})) + 5 * ((S_{6,3} + 4 * S_{6,4}) + 5 * (S_{6,4} + 5 * S_{6,5})) \\ &=& ((32 + 3 * 90) + 4*(90 + 4*(S_{5,3} + 4*S_{5,4}))) + 5 * ((90 + 4*(S_{5,3} + 4*S_{5,4})) \\ &&+ 5*((S_{5,3}+ 4*S_{5,4}) + 5*(S_{5,4} + 5*S_{5,5}))) \\ &=& (302 + 4*(90+4*(57 + 4*(S_{4,3} + 4*S_{4,4})))) \\ &&+ 5*((90+4*(57 + 4*(S_{4,3} + 4*S_{4,4}))) \\ &&+ 5*((57 + 4*(S_{4,3} + 4*S_{4,4})) + 5 * ((S_{4,3} + 4*S_{4,4}) + 5 * 1))) \\ &=& (302 + 4*(90 + 4*(57 + 4*(22 + 4*1)))) \\ && + 5*((90 + 4*(57 + 4*(22 + 4*1)))) \\ && + 5 * ((57 + 4*(22 + 4*1)) + 5*((22 + 4*1) + 5)) \\ &=& 3238 + 3670 + 1580 \\ &=& 8488 \end{eqnarray*} \item Bälle weiterhin unterscheidbar, Urnen jetzt auch unterscheidbar $\Rightarrow$ geordnete Mengenpartition. \begin{eqnarray*} k! * S_{n.k} &=& 5! * S_{9,5} \\ &=& 120 * 8488 \\ &=& 1018560 \end{eqnarray*} \item Jetzt gilt Teller $\widehat{=}$ Ball, Keks $\widehat{=}$ Urne. $n = 5$, $k = 3$. Urnen sind unterscheidbar, \enquote{fünfgangiges Menü} $\Rightarrow$ Bälle sind auch untescheidbar \end{enumerate} \end{document}