notes/school/di-ma/uebung/01/01_3.tex
2018-10-23 15:07:14 +02:00

82 lines
2.6 KiB
TeX

\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {Mi 10-12 (Andre)}
\def \uebung {1} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 1.3}
\begin{enumerate}[(1)]
\item
$2^n$ beschreibt die Potenzmenge, also die Anzahl aller m\"oglichen Teilmengen einer Menge mit $n$ Elementen.
$\binom{n}{k}$ beschreibt die Anzahl der $k$-elementigen Teilmengen einer $n$-elementigen Menge.
$\sum\limits_{k=0}^{n} \binom{n}{k}$ beschreibt also alle m\"oglichen Teilmengen einer $n$-elementigen Menge.
$\Rightarrow \sum\limits_{k=0}^n \binom{n}{k} = 2^n$
\item
$A_n$: Menge aller durch $n$ teilbaren Zahlen $\leq 100$
$M = \{1,\ldots,100\}, |M| = 100$
\begin{eqnarray*}
|A_2 \cup A_3 \cup A_5 \cup A_7 | &=& |A_2| + |A_3| + |A_5| + |A_7| \\
&& - |A_2 \cap A_3| - |A_2 \cap A_5| - |A_2 \cap A_7| - |A_3 \cap A_5| -
|A_3 \cap A_7| - |A_5 \cap A_7| \\
&&+ |A_2 \cap A_3 \cap A_5| + |A_2 \cap A_3 \cap A_7|
+ |A_2 \cap A_5 \cap A_7| + |A_3 \cap A_5 \cap A_7| \\
&&- |A_2 \cap A_3 \cap A_5 \cap A_7| \\
&=& 50 + 33 +20 +14 -16 -10 -7 -6 -4 -2 + 3 + 2 + 1 + 1 - 1 \\
&=& 78
\end{eqnarray*}
78 Zahlen, die durch 2, 3, 5 oder 7 teilbar sind, dabei sind 2, 3, 5 und 7 mitgez\"ahlt $\Rightarrow 78 - 4 =
74$ nicht-Primzahlen $\leq 100$.
\begin{eqnarray*}
\Rightarrow \overline{|A_2 \cup A_3 \cup A_5 \cup A_7|} &=& |\bar{A_2} \cap \bar{A_3} \cap \bar{A_5} \cap
\bar{A_7}| \\
&=& |M \setminus (A_2 \cup A_3 \cup A_5 \cup A_7)| \\
&=& |M| - |A_2 \cup A_3 \cup A_5 \cup A_7| \\
&=& 100 - 77 \\
&=& 26
\end{eqnarray*}
Da Primzahlen $\geq 2$ sind und bis jetzt die 1 mitgez\"ahlt wurde: $\Rightarrow 26 - 1 = 25$.
\end{enumerate}
\end{document}