71 lines
2.1 KiB
TeX
71 lines
2.1 KiB
TeX
\documentclass[12pt,a4paper,german]{article}
|
|
\usepackage{url}
|
|
%\usepackage{graphics}
|
|
\usepackage{times}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{ngerman}
|
|
\usepackage{float}
|
|
\usepackage{diagbox}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{geometry}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsmath}
|
|
\usepackage{cancel}
|
|
\usepackage{wasysym}
|
|
\usepackage{csquotes}
|
|
\usepackage{graphicx}
|
|
\usepackage{epsfig}
|
|
\usepackage{paralist}
|
|
\usepackage{tikz}
|
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
|
|
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
|
\def \name {Valentin Brandl} %
|
|
\def \matrikel {108018274494} %
|
|
\def \pname {Marvin Herrmann} %
|
|
\def \pmatrikel {108018265436} %
|
|
\def \gruppe {2 (Mi 10-12 Andre)}
|
|
\def \qname {Pascal Brackmann}
|
|
\def \qmatrikel {108017113834} %
|
|
\def \uebung {9} %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% DO NOT MODIFY THIS HEADER
|
|
\newcommand{\hwsol}{
|
|
\vspace*{-2cm}
|
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
|
\noindent \pmatrikel \quad \pname \\
|
|
\noindent \qmatrikel \quad \qname \\
|
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
|
}
|
|
|
|
\begin{document}
|
|
%Import header
|
|
\hwsol
|
|
|
|
\section*{Aufgabe 9.2}
|
|
|
|
\begin{enumerate}[1.]
|
|
|
|
\item Ein $K_n$ mit $n \equiv 0 \mod 2$ ($n$ ist gerade) hat 2 perfekte Matchings, die jeweils versetzt jede zweite
|
|
Kante des Kreises beinhalten
|
|
|
|
Für ein perfektes Matching muss gelten $|M| = \frac{|V|}{2}$. Für einen Kreis $K_n$ mit $n \equiv 1 \mod 2$ ($n$
|
|
ist ungerade) gilt $|V| = n$. Da $n$ ungerade existiert keine ganze Zahl $\frac{n}{2}$ $\Rightarrow$ es
|
|
existiert kein perfektes Matching.
|
|
|
|
\item
|
|
\begin{enumerate}[i)]
|
|
\item $M_1 = \{ \{000,100\}, \{001,101\}, \{010,110\}, \{011,111\} \}$
|
|
\item $M_2 = \{ \{000,001\}, \{100,101\}, \{010,011\}, \{110,111\} \}$
|
|
\item $M_3 = \{ \{000,010\}, \{001,011\}, \{100,110\}, \{101,111\} \}$
|
|
\end{enumerate}
|
|
|
|
Es gibt 3 perfekte Matchings.
|
|
|
|
\item $\{ \{000,100\}, \{001,101\}, \{110,111\}, \{010,011\} \}$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{document}
|