notes/school/di-ma/uebung/10/10_1.tex
Valentin Brandl 1fd38b77f6
All checks were successful
the build was successful
Add solution for dima 10
2019-01-08 15:14:11 +01:00

67 lines
2.1 KiB
TeX

\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{wasysym}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {10} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 10.1}
Kriterium:
Eine Zahl $z \in \mathbb{N}$ ist durch 37 teilbar, wenn ihre nicht-alternierende hunderter-Quersumme durch 37 teilbar ist.\\
\\
Beweis: Sei $z=a_0+a_1 \cdot 10 + a_2 \cdot 10^2 + ... + a_n \cdot 10^n$.\\
Es gilt $37 |z \Leftrightarrow z \equiv 0 \text{ mod 37 }$\\
$\Rightarrow a_0+a_1\cdot 10 + a_2 \cdot 10^2 + ... + a_n \cdot 10^n \equiv 0 \text{ mod 37}$\\
Es gilt nun $10^3 \equiv 1 \text{ mod } 37$\\
\\
$\Rightarrow a_0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + a_3 + a_4 \cdot 10 + a_5 \cdot 10^2 + ... + a_n \cdot 10^n \equiv 0 \text{ mod } 37 \Leftrightarrow 37 | z$\\
\\
Interpretiere dies als \enquote{Summe der Hunderter}:\\
$(a_0+a_1 \cdot 10 + a_2 \cdot 10^2) + (a_3 + a_4 \cdot 10 + a_5 \cdot 10^2) + ... + a_n \cdot 10^n \equiv 0 \text{ mod } 37$\\
\\
$\Rightarrow \sum_{i=0}^{\lfloor \frac{n}{3} \rfloor}
(a_{3i}+a_{3i+1}\cdot 10 + a_{3i+2} \cdot 10^2) \equiv 0 \text{ mod } 37$, aj = 0 für j>n\\
$\Rightarrow$ das vorher beschriebene Kriterium
\end{document}