notes/school/di-ma/uebung/11/11_3.tex
2019-01-15 15:40:03 +01:00

91 lines
2.4 KiB
TeX

\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{wasysym}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {11} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 11.3}
\begin{enumerate}[1.]
\item
\begin{alignat*}{6}
(2&x^3 && + 1&) / (3x^2 + x + 1) = \frac{2}{3}x - \frac{2}{9} \\
-(2&x^3 + \frac{2}{3}&x^2 + \frac{2}{3}&x) \\ \cline{1-4}
(& -\frac{2}{3}&x^2 - \frac{2}{3}&x + 1) \\
-(& -\frac{2}{3}&x^2 - \frac{2}{9}&x - \frac{2}{9}) \\\cline{1-4}
(-\frac{4}{9}&x + \frac{11}{9})
\end{alignat*}
Quotient: $\frac{2}{3}x - \frac{2}{9}$
Rest: $- \frac{4}{9}x + \frac{11}{9}$
\item
\begin{align*}
f(x) = 8x + 11 \\
g(x) = 12x^2 + 9x + 11 \\
f,g \in \mathbb{F}_{17}[x]
\end{align*}
\begin{alignat*}{3}
(12&x^2 + 9&x + 11&) / (8x+11) = 10x + 15 \\
-(12&x^2 + 8x &) \\ \cline{1-3}
&& x + 11& \\
- (&& x + 12&) \\ \cline{1-3}
&& 16&
\\
\\
\\
8&x + 11& / (16) = 9x + 6 \\
-(8&x) & \\ \cline{1-2}
& 11& \\
-(&11) \\ \cline{1-2}
0
\end{alignat*}
$\Rightarrow$ $ggT(f,g) = 16 = 1 * (12x^2 + 9x + 11) - (8x+11)(10x+15)$
\end{enumerate}
\end{document}