137 lines
3.6 KiB
TeX
137 lines
3.6 KiB
TeX
\documentclass[12pt,a4paper,german]{article}
|
|
\usepackage{url}
|
|
%\usepackage{graphics}
|
|
\usepackage{times}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{ngerman}
|
|
\usepackage{float}
|
|
\usepackage{diagbox}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{geometry}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsmath}
|
|
\usepackage{csquotes}
|
|
\usepackage{graphicx}
|
|
\usepackage{epsfig}
|
|
\usepackage{paralist}
|
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
|
|
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
|
\def \name {Valentin Brandl} %
|
|
\def \matrikel {108018274494} %
|
|
\def \pname {Marvin Herrmann} %
|
|
\def \pmatrikel {108018265436} %
|
|
\def \gruppe {2 (Mi 10-12 Andre)}
|
|
\def \uebung {2} %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% DO NOT MODIFY THIS HEADER
|
|
\newcommand{\hwsol}{
|
|
\vspace*{-2cm}
|
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
|
\noindent \pmatrikel \quad \pname \\
|
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
|
}
|
|
|
|
\begin{document}
|
|
%Import header
|
|
\hwsol
|
|
|
|
\section*{Aufgabe 2.1}
|
|
\begin{enumerate}[1.]
|
|
\item Kekse $\widehat{=}$ Bälle (unterscheidbar, da \enquote{verschieden}), Portionen $\widehat{=}$ Urnen (nicht
|
|
unterscheidbar). $n = 9$, $k = 5$
|
|
|
|
Problem entspricht einer ungeordneten $k$-Mengenpartition, also $S_{n,k}$
|
|
|
|
\begin{eqnarray*}
|
|
S_{n,k} &=& S_{n-1,k-1} + k * S_{n-1,k} \text{ mit} \\
|
|
S_{0,0} &=& 1 \\
|
|
S_{n,n} &=& 1 \\
|
|
S_{n,1} &=& 1 \\
|
|
S_{n,0} &=& 0 \\\\
|
|
S_{9,5} &=& 6951
|
|
\end{eqnarray*}
|
|
|
|
\item Bälle weiterhin unterscheidbar, Urnen jetzt auch unterscheidbar $\Rightarrow$ geordnete Mengenpartition.
|
|
|
|
\begin{eqnarray*}
|
|
k! * S_{n.k} &=& 5! * S_{9,5} \\
|
|
&=& 120 * 6951 \\
|
|
&=& 834120
|
|
\end{eqnarray*}
|
|
|
|
\item Jetzt gilt Teller $\widehat{=}$ Ball, Keks $\widehat{=}$ Urne. $n = 5$, $k = 3$.
|
|
|
|
Urnen sind unterscheidbar, \enquote{fünfgangiges Menü} $\Rightarrow$ Bälle sind auch untescheidbar
|
|
|
|
\begin{eqnarray*}
|
|
n^{\underline{k}} &=& 5^{\underline{3}} \\
|
|
&=& 5 * 4 * 3 \\
|
|
&=& 60
|
|
\end{eqnarray*}
|
|
|
|
\end{enumerate}
|
|
|
|
\section*{Aufgabe 2.2}
|
|
\begin{enumerate}[1.]
|
|
|
|
\item Zyklenzerlegung: $(1\ 2\ 4) (3) (5\ 9) (6) (7\ 8)$
|
|
|
|
2 Fixpunkte: $3$ und $6$
|
|
|
|
\item
|
|
\begin{eqnarray*}
|
|
s_{n.k} &=& s_{n-1,k-1} + (n-1)s_{n-1,k} \text{ mit} \\
|
|
s_{0,0} &=& 1 \\
|
|
s_{n,0} &=& 0 \\
|
|
s_{n,n} &=& 1 \\\\
|
|
s_{9,5} &=& 22449
|
|
\end{eqnarray*}
|
|
|
|
\end{enumerate}
|
|
|
|
\section*{Aufgabe 2.3}
|
|
\begin{enumerate}[1.]
|
|
|
|
\item
|
|
\begin{eqnarray*}
|
|
x_1 + x_2 + x_3 + x_4 + x_5 + x_6 &=& 67 \text{ mit } x_i \ge 0 \text{ für } 1 \le i \le 6 \\
|
|
\text{Normalisierung:} \\
|
|
\text{für } 1 \le i \le 3 \rightarrow x_i' &=& x_i - 1 \text{ (ungerade Zahlen werden gerade)} \\
|
|
\text{für } 4 \le i \le 6 \rightarrow x_i' &=& x_i \\
|
|
\Rightarrow x_1' + x_2' + x_3' + x_4' + x_5' + x_6' &=& 64 \\
|
|
\text{für } 1 \le i \le 6 \rightarrow y_i &=& \frac{x_i'}{2}
|
|
\text{ (Bedingung \enquote{alle Zahlen gerade} erfüllt)} \\
|
|
\Rightarrow y_1 + y_2 + y_3 + y_4 + y_5 + y_6 &=& 32 \\
|
|
\text{für } 1 \le i \le 6 \rightarrow z_i &=& y_i + 1 \\
|
|
\Rightarrow z_1 + z_2 + z_3 + z_4 + z_5 + y_6 &=& 38 \\\\
|
|
\Rightarrow \binom{n-1}{k-1} &=& \binom{37}{5} = 435897
|
|
\end{eqnarray*}
|
|
|
|
\item
|
|
\begin{eqnarray*}
|
|
P_{n,k} &=& P_{n-1,k-1} + P_{n-k,k} \text{ mit} \\
|
|
P_{n.0} &=& 0 \\
|
|
P_{n.n} &=& 1 \\
|
|
P_{n.1} &=& 1 \\\\
|
|
P_{10,4} &=& 9
|
|
\end{eqnarray*}
|
|
|
|
\end{enumerate}
|
|
|
|
\section*{Aufgabe 2.4}
|
|
|
|
\begin{itemize}
|
|
|
|
\item Nur Schritte nach rechts oder oben sind erlaubt
|
|
|
|
\item Insgesamt $n$ Schritte nach oben und $k$ Schritte nach rechts
|
|
|
|
\item $\Rightarrow \frac{(n + k)!}{n! k!} = \binom{n + k}{k}$
|
|
|
|
\end{itemize}
|
|
|
|
\end{document}
|
|
|