476 lines
17 KiB
TeX
476 lines
17 KiB
TeX
\documentclass[12pt,a4paper,german]{article}
|
|
\usepackage{url}
|
|
%\usepackage{graphics}
|
|
\usepackage{times}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{pifont}
|
|
\usepackage{ngerman}
|
|
\usepackage{float}
|
|
\usepackage{diagbox}
|
|
\usepackage[latin1]{inputenc}
|
|
\usepackage{geometry}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsmath}
|
|
\usepackage{delarray}
|
|
% \usepackage{minted}
|
|
\usepackage{csquotes}
|
|
\usepackage{graphicx}
|
|
\usepackage{epsfig}
|
|
\usepackage{longtable}
|
|
\usepackage{paralist}
|
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
|
|
|
\graphicspath{.}
|
|
|
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
|
\def \name {Valentin Brandl} %
|
|
\def \matrikel {108018274494} %
|
|
% \def \pname {Vorname2 Nachname2} %
|
|
% \def \pmatrikel {Matrikelnummer2} %
|
|
\def \gruppe {Gruppe 193} %
|
|
\def \uebung {4} %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% DO NOT MODIFY THIS HEADER
|
|
\newcommand{\hwsol}{
|
|
\vspace*{-2cm}
|
|
\noindent \matrikel \quad \name \hfill Gruppe:\gruppe \\
|
|
% \noindent \pmatrikel \quad \pname \\
|
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
|
}
|
|
|
|
\newcommand{\cmark}{\ding{51}}%
|
|
\newcommand{\xmark}{\ding{55}}%
|
|
|
|
\begin{document}
|
|
%Import header
|
|
\hwsol
|
|
|
|
|
|
\section*{Aufgabe 1}
|
|
|
|
Grad $m = 6 \Rightarrow 2^m - 1 = 2^6 - 1 = 63$.
|
|
|
|
Zustände und Tabellen wurden mit dem angehängten Code generiert.
|
|
|
|
%{{{ a1
|
|
\begin{enumerate}[a)]
|
|
|
|
\item $x^5 + x^4 + x^2 + x + 1$
|
|
|
|
\begin{figure}[h]
|
|
\includegraphics[width=\textwidth]{school/intro-crypto/uebung/04/1a.jpg}
|
|
\caption{Schaltbild des Schieberegisters für 1a)}
|
|
\end{figure}
|
|
|
|
IV: $1 0 0 0 0 0$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
|
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
|
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
|
|
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
|
|
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
\underline{1} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & 0 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung nach 21 Iterationen.
|
|
|
|
Neuer IV: $1 1 1 1 1 1$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
|
|
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
|
|
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
|
|
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
|
|
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
|
|
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
|
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
|
|
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
|
|
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
|
|
1 & 1 & 1 & 0 & 1 & 1 & 1 \\
|
|
1 & 1 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
|
|
\underline{1} & \underline{1} & \underline{1} & \underline{1} & \underline{1} & \underline{1} & 1 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung wieder nach 21 Iterationen.
|
|
|
|
$63 - 21 - 21 = 21$ Fehlende Zustände.
|
|
|
|
Neuer IV: $1 1 0 0 0 0$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
|
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
|
|
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
|
|
1 & 1 & 0 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
|
|
1 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
\underline{1} & \underline{1} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & 0 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung wieder nach 21 Iterationen.
|
|
|
|
$63 - 21 - 21 - 21 = 0$ Fehlende Zustände. Alle möglichen Zustände wurden erzeugt.
|
|
|
|
Keine Sequenz maximaler Länge aber Länge unabhängig von IV$\Rightarrow$ es liegt ein irreduzibles Polynom
|
|
zugrunde
|
|
|
|
\item $x^5 + x + 1$
|
|
|
|
\begin{figure}[h]
|
|
\includegraphics[width=\textwidth]{school/intro-crypto/uebung/04/1b.jpg}
|
|
\caption{Schaltbild des Schieberegisters für 1b)}
|
|
\end{figure}
|
|
|
|
IV: $1 0 0 0 0 0$
|
|
|
|
\begin{longtable}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
|
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
|
|
1 & 1 & 1 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
\underline{1} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & 0 \\
|
|
\end{longtable}
|
|
|
|
Wiederholung nach 63 Iterationen, es wurden also eine Sequenz maximaler Länge erzeugt $\Rightarrow$ primitives
|
|
Polynom liegt zugrunde.
|
|
|
|
\item $x^5 + x^3 + x^2 + x + 1$
|
|
|
|
\begin{figure}[h]
|
|
\includegraphics[width=\textwidth]{school/intro-crypto/uebung/04/1c.jpg}
|
|
\caption{Schaltbild des Schieberegisters für 1c)}
|
|
\end{figure}
|
|
|
|
IV: $1 0 0 0 0 0$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
|
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
|
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
|
|
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
|
|
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
|
|
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
|
|
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
\underline{1} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & 0 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung nach 15 Iterationen.
|
|
|
|
Neuer IV: $1 1 1 1 1 1$
|
|
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
|
|
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
|
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
|
|
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 1 & 1 & 1 & 1 \\
|
|
1 & 1 & 1 & 0 & 1 & 1 & 1 \\
|
|
1 & 1 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
|
|
\underline{1} & \underline{1} & \underline{1} & \underline{1} & \underline{1} & \underline{1} & 1 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung nach 15 Iterationen. $63 - 15 - 15 = 33$ Fehlende Zustände.
|
|
|
|
Neuer IV: $1 1 0 0 0 0$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
|
|
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
|
|
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
|
|
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
|
|
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
\underline{1} & \underline{1} & \underline{0} & \underline{0} & \underline{0} & \underline{0} & 0 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung nach 15 Iterationen. $63 - 15 - 15 - 15 = 18$ Fehlende Zustände.
|
|
|
|
Neuer IV: $1 1 1 0 0 0$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
|
|
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
|
|
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
|
|
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
|
|
1 & 0 & 1 & 0 & 1 & 1 & 1 \\
|
|
1 & 1 & 0 & 1 & 0 & 1 & 1 \\
|
|
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
|
|
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
|
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
|
|
\underline{1} & \underline{1} & \underline{1} & \underline{0} & \underline{0} & \underline{0} & 0 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung nach 15 Iterationen. $63 - 15 - 15 - 15 - 15 = 3$ Fehlende Zustände.
|
|
|
|
Letzter IV: $1 0 1 1 0 1$
|
|
|
|
\begin{tabular}{|cccccc|c|}
|
|
$x_5$ & $x_4$ & $x_3$ & $x_2$ & $x_1$ & $x_0$ & Output \\\hline
|
|
1 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
|
|
\underline{1} & \underline{0} & \underline{1} & \underline{1} & \underline{0} & \underline{1} & 1 \\
|
|
\end{tabular}
|
|
|
|
Wiederholung nach 3 Iterathonen. $63 - 15 - 15 - 15 - 15 -3 = 0$ fehlende Zustände.
|
|
|
|
Keine Sequenz maximaler Länge und Länge ist abhängig von IV $\Rightarrow$ reduzibles Polynom liegt zugrunde.
|
|
|
|
|
|
\end{enumerate} %}}}
|
|
|
|
\section*{Aufgabe 2}
|
|
|
|
\begin{eqnarray*}
|
|
s = 155 \text{ Mbits/sec} = 155 * 2^{20} \text{ bit/sec} \\
|
|
12h = 12 * 60 * 60 sec = 43200 sec \\
|
|
155 * 2^{20} \frac{bit}{sec} * 43200 sec = 7021264896000 bit
|
|
\end{eqnarray*}
|
|
|
|
Gesucht $m \in \mathbb{N}$, so dass $2^m - 1 > 7021264896000$ (gelöst mit Wolframalpha)
|
|
|
|
\begin{eqnarray*}
|
|
2^m - 1 &> 7021264896000 \\
|
|
m &> 42
|
|
\end{eqnarray*}
|
|
|
|
Vorausgesetzt, es handelt sich um ein primitives Polynom, ist der minimale Grad, der benötigt wird, dass eine
|
|
Wiederholung in der Schlüsselfolge frühestens nach 12 Stunden passiert $m = 43$.
|
|
|
|
\section*{Aufgabe 3}
|
|
|
|
\begin{enumerate}[a)]
|
|
|
|
\item $m = 8 \Rightarrow 2^m - 1 = 2^8 - 1 = 255$
|
|
|
|
\item $2*m - 1 = 2 * 8 - 1 = 15$
|
|
|
|
\item
|
|
\begin{align*}
|
|
y_i &\equiv x_i + s_i &\mod 2 \\
|
|
s_i &\equiv y_i + x_i &\mod 2
|
|
\end{align*}
|
|
|
|
Rekonstruieren der ersten 15 Bit des Schlüsselstroms mit Hilfe des known-plaintext \enquote{Mo} $\Rightarrow$
|
|
0x4d, 0x6f $\Rightarrow (01001101)_2, (01101111)_2$
|
|
|
|
Die ersten 2 Bytes des Ciphertext sind 0xEC, 0xD4 $\Rightarrow (11101100)_2, (11010100)_2$
|
|
|
|
Mit Hilfe des angehängten Programms wurden die folgenden 2 Schlüsselstrom Bytes berechnet: $(10100001)_2,
|
|
(10111011)_2 \Rightarrow (A1)_{16}, (BB)_{16}$
|
|
|
|
\item Folgendes System $(A\mid b)$ gilt es zu lösen:
|
|
|
|
Die Matrix wurde mit Hilfe von \url{https://planetcalc.com/3324/} invertiert.
|
|
|
|
\begin{align*}
|
|
\begin{array}({@{}cccccccc|c@{}})
|
|
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
|
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
|
|
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
|
|
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
|
|
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
|
|
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
|
|
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1
|
|
\end{array} \\
|
|
Ax = b \Rightarrow A^{-1}b = x \\
|
|
A^{-1} =
|
|
\begin{matrix}
|
|
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
|
|
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
|
|
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
|
|
1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
|
|
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
|
|
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
|
|
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
|
|
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0
|
|
\end{matrix} \\
|
|
b =
|
|
\begin{matrix}
|
|
1\\
|
|
0\\
|
|
1\\
|
|
1\\
|
|
1\\
|
|
0\\
|
|
1\\
|
|
1\\
|
|
\end{matrix}\\
|
|
x =
|
|
\begin{array}({@{}cccccccc@{}})
|
|
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1
|
|
\end{array} \\
|
|
p_0 = 1 \\
|
|
p_1 = 1 \\
|
|
p_2 = 0 \\
|
|
p_3 = 0 \\
|
|
p_4 = 0 \\
|
|
p_5 = 1 \\
|
|
p_6 = 1 \\
|
|
p_7 = 0 \\
|
|
\end{align*}
|
|
|
|
\item Der Klartext ist \enquote{Mondl4ndunG}.
|
|
|
|
Berechnet mit dem Code im Anhang.
|
|
|
|
\item Die erste unsanfte und unbemannte Mondlandung war am 13.09.1959 (Lunik 2).
|
|
|
|
Die erste sanfte und unbemannte Mondlandung am 03.02.1966 (Luna 9)
|
|
|
|
Die erste bemannte Mondlandung war am 21.07.1969 (Apollo 11).
|
|
|
|
(Quelle: \url{https://de.wikipedia.org/wiki/Mondlandung})
|
|
|
|
\end{enumerate}
|
|
|
|
% \section*{Code}
|
|
|
|
% \inputminted{rust}{./school/intro-crypto/uebung/04/lfsr/src/main.rs}
|
|
|
|
\end{document}
|
|
|