9.0 KiB
Handler
A request handler can by any object that implements
Handler trait.
Request handling happen in two stages. First handler object get called.
Handle can return any object that implements
Responder trait.
Then respond_to()
get called on returned object. And finally
result of the respond_to()
call get converted to Reply
object.
By default actix provides Responder
implementations for some standard types,
like &'static str
, String
, etc.
For complete list of implementations check
Responder documentation.
Examples of valid handlers:
fn index(req: HttpRequest) -> &'static str {
"Hello world!"
}
fn index(req: HttpRequest) -> String {
"Hello world!".to_owned()
}
fn index(req: HttpRequest) -> Bytes {
Bytes::from_static("Hello world!")
}
fn index(req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
...
}
Some notes on shared application state and handler state. If you noticed
Handler trait is generic over S, which defines application state type. So
application state is accessible from handler with HttpRequest::state()
method.
But state is accessible as a read-only reference, if you need mutable access to state
you have to implement it yourself. On other hand handler can mutable access it's own state
as handle
method takes mutable reference to self. Beware, actix creates multiple copies
of application state and handlers, unique for each thread, so if you run your
application in several threads actix will create same amount as number of threads
of application state objects and handler objects.
Here is example of handler that stores number of processed requests:
# extern crate actix;
# extern crate actix_web;
use actix_web::*;
use actix_web::dev::Handler;
struct MyHandler(usize);
impl<S> Handler<S> for MyHandler {
type Result = HttpResponse;
/// Handle request
fn handle(&mut self, req: HttpRequest<S>) -> Self::Result {
self.0 += 1;
httpcodes::HttpOk.into()
}
}
# fn main() {}
This handler will work, but self.0
value will be different depends on number of threads and
number of requests processed per thread. Proper implementation would use Arc
and AtomicUsize
# extern crate actix;
# extern crate actix_web;
use actix_web::*;
use actix_web::dev::Handler;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
struct MyHandler(Arc<AtomicUsize>);
impl<S> Handler<S> for MyHandler {
type Result = HttpResponse;
/// Handle request
fn handle(&mut self, req: HttpRequest<S>) -> Self::Result {
self.0.fetch_add(1, Ordering::Relaxed);
httpcodes::HttpOk.into()
}
}
fn main() {
let sys = actix::System::new("example");
let inc = Arc::new(AtomicUsize::new(0));
HttpServer::new(
move || {
let cloned = inc.clone();
Application::new()
.resource("/", move |r| r.h(MyHandler(cloned)))
})
.bind("127.0.0.1:8088").unwrap()
.start();
println!("Started http server: 127.0.0.1:8088");
# actix::Arbiter::system().do_send(actix::msgs::SystemExit(0));
let _ = sys.run();
}
Be careful with synchronization primitives like Mutex or RwLock. Actix web framework handles request asynchronously, by blocking thread execution all concurrent request handling processes would block. If you need to share or update some state from multiple threads consider using actix actor system.
Response with custom type
To return custom type directly from handler function, type needs to implement Responder
trait.
Let's create response for custom type that serializes to application/json
response:
# extern crate actix;
# extern crate actix_web;
extern crate serde;
extern crate serde_json;
#[macro_use] extern crate serde_derive;
use actix_web::*;
#[derive(Serialize)]
struct MyObj {
name: &'static str,
}
/// Responder
impl Responder for MyObj {
type Item = HttpResponse;
type Error = Error;
fn respond_to(self, req: HttpRequest) -> Result<HttpResponse> {
let body = serde_json::to_string(&self)?;
// Create response and set content type
Ok(HttpResponse::Ok()
.content_type("application/json")
.body(body)?)
}
}
/// Because `MyObj` implements `Responder`, it is possible to return it directly
fn index(req: HttpRequest) -> MyObj {
MyObj{name: "user"}
}
fn main() {
let sys = actix::System::new("example");
HttpServer::new(
|| Application::new()
.resource("/", |r| r.method(Method::GET).f(index)))
.bind("127.0.0.1:8088").unwrap()
.start();
println!("Started http server: 127.0.0.1:8088");
# actix::Arbiter::system().do_send(actix::msgs::SystemExit(0));
let _ = sys.run();
}
Async handlers
There are two different types of async handlers.
Response object could be generated asynchronously or more precisely, any type
that implements Responder trait. In this case handle must
return Future
object that resolves to Responder type, i.e:
# extern crate actix_web;
# extern crate futures;
# extern crate bytes;
# use actix_web::*;
# use bytes::Bytes;
# use futures::stream::once;
# use futures::future::{Future, result};
fn index(req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
result(HttpResponse::Ok()
.content_type("text/html")
.body(format!("Hello!"))
.map_err(|e| e.into()))
.responder()
}
fn index2(req: HttpRequest) -> Box<Future<Item=&'static str, Error=Error>> {
result(Ok("Welcome!"))
.responder()
}
fn main() {
Application::new()
.resource("/async", |r| r.route().a(index))
.resource("/", |r| r.route().a(index2))
.finish();
}
Or response body can be generated asynchronously. In this case body
must implement stream trait Stream<Item=Bytes, Error=Error>
, i.e:
# extern crate actix_web;
# extern crate futures;
# extern crate bytes;
# use actix_web::*;
# use bytes::Bytes;
# use futures::stream::once;
fn index(req: HttpRequest) -> HttpResponse {
let body = once(Ok(Bytes::from_static(b"test")));
HttpResponse::Ok()
.content_type("application/json")
.body(Body::Streaming(Box::new(body))).unwrap()
}
fn main() {
Application::new()
.resource("/async", |r| r.f(index))
.finish();
}
Both methods could be combined. (i.e Async response with streaming body)
It is possible return Result
which Result::Item
type could be Future
.
In this example index
handler can return error immediately or return
future that resolves to a HttpResponse
.
# extern crate actix_web;
# extern crate futures;
# extern crate bytes;
# use actix_web::*;
# use bytes::Bytes;
# use futures::stream::once;
# use futures::future::{Future, result};
fn index(req: HttpRequest) -> Result<Box<Future<Item=HttpResponse, Error=Error>>, Error> {
if is_error() {
Err(error::ErrorBadRequest("bad request"))
} else {
Ok(Box::new(
result(HttpResponse::Ok()
.content_type("text/html")
.body(format!("Hello!")))))
}
}
#
# fn is_error() -> bool { true }
# fn main() {
# Application::new()
# .resource("/async", |r| r.route().f(index))
# .finish();
# }
Different return types (Either)
Sometimes you need to return different types of responses. For example you can do error check and return error and return async response otherwise. Or any result that requires two different types. For this case Either type can be used. Either allows to combine two different responder types into a single type.
# extern crate actix_web;
# extern crate futures;
# use actix_web::*;
# use futures::future::Future;
use futures::future::result;
use actix_web::{Either, Error, HttpResponse, httpcodes};
type RegisterResult = Either<HttpResponse, Box<Future<Item=HttpResponse, Error=Error>>>;
fn index(req: HttpRequest) -> RegisterResult {
if is_a_variant() { // <- choose variant A
Either::A(
httpcodes::HttpBadRequest.with_body("Bad data"))
} else {
Either::B( // <- variant B
result(HttpResponse::Ok()
.content_type("text/html")
.body(format!("Hello!"))
.map_err(|e| e.into())).responder())
}
}
# fn is_a_variant() -> bool { true }
# fn main() {
# Application::new()
# .resource("/register", |r| r.f(index))
# .finish();
# }
Tokio core handle
Any actix web handler runs within properly configured actix system and arbiter. You can always get access to tokio handle via Arbiter::handle() method.