8.8 KiB
Request & Response
Response
Builder-like patter is used to construct an instance of HttpResponse
.
HttpResponse
provides several method that returns HttpResponseBuilder
instance,
which is implements various convenience methods that helps build response.
Check documentation
for type description. Methods .body
, .finish
, .json
finalizes response creation and
returns constructed HttpResponse instance. if this methods get called for the same
builder instance multiple times, builder will panic.
# extern crate actix_web;
use actix_web::*;
use actix_web::headers::ContentEncoding;
fn index(req: HttpRequest) -> HttpResponse {
HttpResponse::Ok()
.content_encoding(ContentEncoding::Br)
.content_type("plain/text")
.header("X-Hdr", "sample")
.body("data").unwrap()
}
# fn main() {}
Content encoding
Actix automatically compress/decompress payload. Following codecs are supported:
- Brotli
- Gzip
- Deflate
- Identity
If request headers contains Content-Encoding
header, request payload get decompressed
according to header value. Multiple codecs are not supported, i.e: Content-Encoding: br, gzip
.
Response payload get compressed based on content_encoding parameter.
By default ContentEncoding::Auto
is used. If ContentEncoding::Auto
is selected
then compression depends on request's Accept-Encoding
header.
ContentEncoding::Identity
could be used to disable compression.
If other content encoding is selected the compression is enforced for this codec. For example,
to enable brotli
response's body compression use ContentEncoding::Br
:
# extern crate actix_web;
use actix_web::*;
use actix_web::headers::ContentEncoding;
fn index(req: HttpRequest) -> HttpResponse {
HttpResponse::Ok()
.content_encoding(ContentEncoding::Br)
.body("data").unwrap()
}
# fn main() {}
JSON Request
There are two options of json body deserialization.
First option is to use HttpResponse::json() method. This method returns JsonBody object which resolves into deserialized value.
# extern crate actix;
# extern crate actix_web;
# extern crate futures;
# extern crate serde_json;
# #[macro_use] extern crate serde_derive;
# use actix_web::*;
# use futures::Future;
#[derive(Debug, Serialize, Deserialize)]
struct MyObj {
name: String,
number: i32,
}
fn index(mut req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
req.json().from_err()
.and_then(|val: MyObj| {
println!("model: {:?}", val);
Ok(httpcodes::HttpOk.build().json(val)?) // <- send response
})
.responder()
}
# fn main() {}
Or you can manually load payload into memory and then deserialize it. Here is simple example. We will deserialize MyObj struct. We need to load request body first and then deserialize json into object.
# extern crate actix_web;
# extern crate futures;
# use actix_web::*;
# #[macro_use] extern crate serde_derive;
extern crate serde_json;
use futures::{Future, Stream};
#[derive(Serialize, Deserialize)]
struct MyObj {name: String, number: i32}
fn index(req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
// `concat2` will asynchronously read each chunk of the request body and
// return a single, concatenated, chunk
req.concat2()
// `Future::from_err` acts like `?` in that it coerces the error type from
// the future into the final error type
.from_err()
// `Future::and_then` can be used to merge an asynchronous workflow with a
// synchronous workflow
.and_then(|body| { // <- body is loaded, now we can deserialize json
let obj = serde_json::from_slice::<MyObj>(&body)?;
Ok(httpcodes::HttpOk.build().json(obj)?) // <- send response
})
.responder()
}
# fn main() {}
Complete example for both options is available in examples directory.
JSON Response
The Json
type allows you to respond with well-formed JSON data: simply return a value of
type Json where T is the type of a structure to serialize into JSON. The
type T
must implement the Serialize
trait from serde.
# extern crate actix_web;
#[macro_use] extern crate serde_derive;
use actix_web::*;
#[derive(Serialize)]
struct MyObj {
name: String,
}
fn index(req: HttpRequest) -> Result<Json<MyObj>> {
Ok(Json(MyObj{name: req.match_info().query("name")?}))
}
fn main() {
Application::new()
.resource(r"/a/{name}", |r| r.method(Method::GET).f(index))
.finish();
}
Chunked transfer encoding
Actix automatically decode chunked encoding. HttpRequest::payload()
already contains
decoded bytes stream. If request payload compressed with one of supported
compression codecs (br, gzip, deflate) bytes stream get decompressed.
Chunked encoding on response could be enabled with HttpResponseBuilder::chunked()
method.
But this takes effect only for Body::Streaming(BodyStream)
or Body::StreamingContext
bodies.
Also if response payload compression is enabled and streaming body is used, chunked encoding
get enabled automatically.
Enabling chunked encoding for HTTP/2.0 responses is forbidden.
# extern crate bytes;
# extern crate actix_web;
# extern crate futures;
# use futures::Stream;
use actix_web::*;
use bytes::Bytes;
use futures::stream::once;
fn index(req: HttpRequest) -> HttpResponse {
HttpResponse::Ok()
.chunked()
.body(Body::Streaming(Box::new(once(Ok(Bytes::from_static(b"data")))))).unwrap()
}
# fn main() {}
Multipart body
Actix provides multipart stream support.
Multipart is implemented as
a stream of multipart items, each item could be
Field or nested Multipart stream.
HttpResponse::multipart()
method returns Multipart stream for current request.
In simple form multipart stream handling could be implemented similar to this example
# extern crate actix_web;
use actix_web::*;
fn index(req: HttpRequest) -> Box<Future<...>> {
req.multipart() // <- get multipart stream for current request
.and_then(|item| { // <- iterate over multipart items
match item {
// Handle multipart Field
multipart::MultipartItem::Field(field) => {
println!("==== FIELD ==== {:?} {:?}", field.headers(), field.content_type());
Either::A(
// Field in turn is a stream of *Bytes* objects
field.map(|chunk| {
println!("-- CHUNK: \n{}",
std::str::from_utf8(&chunk).unwrap());})
.fold((), |_, _| result(Ok(()))))
},
multipart::MultipartItem::Nested(mp) => {
// Or item could be nested Multipart stream
Either::B(result(Ok(())))
}
}
})
}
Full example is available in examples directory.
Urlencoded body
Actix provides support for application/x-www-form-urlencoded encoded body.
HttpResponse::urlencoded()
method returns
UrlEncoded future, it resolves
into HashMap<String, String>
which contains decoded parameters.
UrlEncoded future can resolve into a error in several cases:
- content type is not
application/x-www-form-urlencoded
- transfer encoding is
chunked
. - content-length is greater than 256k
- payload terminates with error.
# extern crate actix_web;
# extern crate futures;
use actix_web::*;
use futures::future::{Future, ok};
fn index(mut req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
req.urlencoded() // <- get UrlEncoded future
.from_err()
.and_then(|params| { // <- url encoded parameters
println!("==== BODY ==== {:?}", params);
ok(httpcodes::HttpOk.into())
})
.responder()
}
# fn main() {}
Streaming request
HttpRequest is a stream of Bytes
objects. It could be used to read request
body payload.
In this example handle reads request payload chunk by chunk and prints every chunk.
# extern crate actix_web;
# extern crate futures;
# use futures::future::result;
use actix_web::*;
use futures::{Future, Stream};
fn index(mut req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
req.from_err()
.fold((), |_, chunk| {
println!("Chunk: {:?}", chunk);
result::<_, error::PayloadError>(Ok(()))
})
.map(|_| HttpResponse::Ok().finish().unwrap())
.responder()
}
# fn main() {}