mirror of
https://github.com/actix/examples
synced 2025-01-22 14:05:55 +01:00
Merge pull request #333 from fakeshadow/master
This commit is contained in:
commit
4ada3c9ed1
@ -1,5 +1,6 @@
|
||||
[workspace]
|
||||
members = [
|
||||
"async_data_factory",
|
||||
"async_db",
|
||||
"async_ex1",
|
||||
"async_ex2",
|
||||
|
15
async_data_factory/Cargo.toml
Normal file
15
async_data_factory/Cargo.toml
Normal file
@ -0,0 +1,15 @@
|
||||
[package]
|
||||
name = "async_data_factory"
|
||||
version = "0.1.0"
|
||||
authors = ["fakeshadow <24548779@qq.com>"]
|
||||
edition = "2018"
|
||||
workspace = ".."
|
||||
|
||||
|
||||
[dependencies]
|
||||
actix-rt = "1.1.1"
|
||||
actix-web = { version = "2.0.0" }
|
||||
num_cpus = "1.13.0"
|
||||
redis = { version = "0.16.0", default-features = false, features = ["tokio-rt-core"] }
|
||||
# redis_tang is an redis pool for test purpose
|
||||
redis_tang = "0.1.0"
|
23
async_data_factory/README.md
Normal file
23
async_data_factory/README.md
Normal file
@ -0,0 +1,23 @@
|
||||
## Usage:
|
||||
This is an example on constructing async state with `App::data_factory`
|
||||
|
||||
## Reason:
|
||||
`data_factory` would make sense in these situations:
|
||||
- When async state not necessarily have to be shared between workers/threads.
|
||||
|
||||
- When async state would spawn tasks on `actix-rt`. If we centralized the state there could be a possibility the tasks get a very unbalanced distribution on the workers/threads
|
||||
(`actix-rt` would spawn tasks on local thread whenever it's called)
|
||||
|
||||
## Requirement:
|
||||
- `rustc 1.43 stable`
|
||||
- `redis` server listen on `127.0.0.1:6379`(or use `REDIS_URL` env argument when starting the example)
|
||||
|
||||
## Endpoints:
|
||||
- use a work load generator(e.g wrk) to benchmark the end points:
|
||||
|
||||
http://127.0.0.1:8080/pool prebuilt shared redis pool
|
||||
http://127.0.0.1:8080/pool2 data_factory redis pool
|
||||
|
||||
## Context:
|
||||
The real world difference can be vary by the work you are doing but in general it's a good idea to
|
||||
spread your *identical* async tasks evenly between threads and have as little cross threads synchronization as possible.
|
106
async_data_factory/src/main.rs
Normal file
106
async_data_factory/src/main.rs
Normal file
@ -0,0 +1,106 @@
|
||||
use actix_web::web::Data;
|
||||
use actix_web::{get, App, HttpServer};
|
||||
|
||||
use redis_tang::{Builder, Pool, RedisManager};
|
||||
|
||||
#[actix_rt::main]
|
||||
async fn main() -> std::io::Result<()> {
|
||||
let redis_url =
|
||||
std::env::var("REDIS_URL").unwrap_or_else(|_| String::from("redis://127.0.0.1"));
|
||||
|
||||
let num_cpus = num_cpus::get();
|
||||
|
||||
// a shared redis pool for work load comparison.
|
||||
let pool = pool_builder(num_cpus, redis_url.as_str())
|
||||
.await
|
||||
.expect("fail to build pool");
|
||||
let pool = RedisWrapper(pool);
|
||||
|
||||
HttpServer::new(move || {
|
||||
let redis_url = redis_url.clone();
|
||||
|
||||
App::new()
|
||||
.data(pool.clone())
|
||||
// a dummy data_factory implementation
|
||||
.data_factory(|| {
|
||||
/*
|
||||
App::data_factory would accept a future as return type and poll the future when
|
||||
App is initialized.
|
||||
|
||||
The Output of the future must be Result<T, E> and T will be the transformed to
|
||||
App::Data<T> that can be extracted from handler/request.
|
||||
(The E will only be used to trigger a log::error.)
|
||||
|
||||
This data is bound to worker thread and you get an instance of it for every
|
||||
worker of the HttpServer.(hence the name data_factory)
|
||||
*. It is NOT shared between workers
|
||||
(unless the underlying data is a smart pointer like Arc<T>).
|
||||
*/
|
||||
|
||||
async {
|
||||
// 123usize would be transformed into Data<usize>
|
||||
Ok::<usize, ()>(123)
|
||||
}
|
||||
})
|
||||
// a data_factory redis pool for work load comparison.
|
||||
.data_factory(move || pool_builder(1, redis_url.clone()))
|
||||
.service(pool_shared_prebuilt)
|
||||
.service(pool_local)
|
||||
})
|
||||
.bind("127.0.0.1:8080")?
|
||||
.run()
|
||||
.await
|
||||
}
|
||||
|
||||
/*
|
||||
This pool is shared between workers. We have all redis connections spawned tasks on main thread
|
||||
therefore it puts too much pressure on one thread.
|
||||
*. This is the case for redis::aio::MultiplexedConnection and it may not apply to other async
|
||||
redis connection type.
|
||||
*/
|
||||
#[get("/pool")]
|
||||
async fn pool_shared_prebuilt(pool: Data<RedisWrapper>) -> &'static str {
|
||||
ping(&pool.as_ref().0).await
|
||||
}
|
||||
|
||||
/*
|
||||
This pool is built with App::data_factory and we have 2 connections fixed for every worker.
|
||||
It's evenly distributed and have no cross workers synchronization.
|
||||
*/
|
||||
#[get("/pool2")]
|
||||
async fn pool_local(data: Data<usize>, pool: Data<Pool<RedisManager>>) -> &'static str {
|
||||
assert_eq!(data.get_ref(), &123);
|
||||
|
||||
ping(pool.as_ref()).await
|
||||
}
|
||||
|
||||
// boiler plate for redis pool
|
||||
#[derive(Clone)]
|
||||
struct RedisWrapper(Pool<RedisManager>);
|
||||
|
||||
async fn pool_builder(
|
||||
num_cpus: usize,
|
||||
redis_url: impl redis::IntoConnectionInfo,
|
||||
) -> Result<Pool<RedisManager>, ()> {
|
||||
let mgr = RedisManager::new(redis_url);
|
||||
Builder::new()
|
||||
.always_check(false)
|
||||
.idle_timeout(None)
|
||||
.max_lifetime(None)
|
||||
.min_idle(num_cpus * 2)
|
||||
.max_size(num_cpus * 2)
|
||||
.build(mgr)
|
||||
.await
|
||||
.map_err(|_| ())
|
||||
}
|
||||
|
||||
async fn ping(pool: &Pool<RedisManager>) -> &'static str {
|
||||
let mut client = pool.get().await.unwrap().clone();
|
||||
|
||||
redis::cmd("PING")
|
||||
.query_async::<_, ()>(&mut client)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
"Done"
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user