notes/school/di-ma/uebung/03/03_3.tex

77 lines
2.4 KiB
TeX
Raw Permalink Normal View History

2018-11-05 22:29:46 +01:00
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \uebung {3} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 3.3}
\begin{enumerate}[1.]
\item
\begin{eqnarray*}
\ln n &= o(e^{\sqrt{\ln n}}) \\
\text{Anwendung des Satz von L'Hospital:} \\
\lim\limits_{x \to x_0} \frac{f(x)}{g(x)} &= \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)} \\
\Rightarrow &\lim\limits_{n \to \infty} \left( \frac{\frac{1}{n}}{e^{\sqrt{\ln(n)}}
\frac{1}{2n\sqrt{\ln(n)}}} \right) \\
&= \lim\limits_{n \to \infty} \left( \frac{\frac{1}{n}n}{e^{\sqrt{\ln(n)}}\frac{n}{2n\sqrt{\ln(n)}}}
\right) \\
&= \lim\limits_{n \to \infty} \left( \frac{1}{\frac{e^{\sqrt{\ln(n)}}}{2\sqrt{\ln(n)}}} \right) \\
&= \lim\limits_{n \to \infty} \frac{1}{\infty} \\
\end{eqnarray*}
da $e^{\sqrt{\ln(n)}}$ schneller wächst als $2\sqrt{\ln(n)}$
$\Rightarrow \ln n = o(e^{\sqrt{\ln n}})$
\item
\begin{eqnarray*}
e^{\sqrt{\ln n}} &= o(n^{\varepsilon}) \text{ für alle } \varepsilon \in \mathbb{R}, \varepsilon > 0 \\
\lim\limits_{n \to \infty} \frac{e^{\sqrt{\ln n}}}{e^{\ln(n^{\varepsilon})}} =
\lim\limits_{n \to \infty} \frac{e^{\sqrt{\ln n}}}{e^{\varepsilon \cdot \ln n}} = 0
\end{eqnarray*}
Gilt für alle $\varepsilon > 0$, da $\ln n$ schneller wächst als $\sqrt{\ln n}$.
$\Rightarrow e^{\sqrt{\ln n}} = o(n^{\varepsilon})$
\end{enumerate}
\end{document}