77 lines
2.4 KiB
TeX
77 lines
2.4 KiB
TeX
\documentclass[12pt,a4paper,german]{article}
|
|
\usepackage{url}
|
|
%\usepackage{graphics}
|
|
\usepackage{times}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{ngerman}
|
|
\usepackage{float}
|
|
\usepackage{diagbox}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{geometry}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsmath}
|
|
\usepackage{csquotes}
|
|
\usepackage{graphicx}
|
|
\usepackage{epsfig}
|
|
\usepackage{paralist}
|
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
|
|
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
|
\def \name {Valentin Brandl} %
|
|
\def \matrikel {108018274494} %
|
|
\def \pname {Marvin Herrmann} %
|
|
\def \pmatrikel {108018265436} %
|
|
\def \qname {Pascal Brackmann}
|
|
\def \qmatrikel {108017113834} %
|
|
\def \gruppe {2 (Mi 10-12 Andre)}
|
|
\def \uebung {3} %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% DO NOT MODIFY THIS HEADER
|
|
\newcommand{\hwsol}{
|
|
\vspace*{-2cm}
|
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
|
\noindent \pmatrikel \quad \pname \\
|
|
\noindent \qmatrikel \quad \qname \\
|
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
|
}
|
|
|
|
\begin{document}
|
|
%Import header
|
|
\hwsol
|
|
|
|
\section*{Aufgabe 3.3}
|
|
\begin{enumerate}[1.]
|
|
|
|
\item
|
|
\begin{eqnarray*}
|
|
\ln n &= o(e^{\sqrt{\ln n}}) \\
|
|
\text{Anwendung des Satz von L'Hospital:} \\
|
|
\lim\limits_{x \to x_0} \frac{f(x)}{g(x)} &= \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)} \\
|
|
\Rightarrow &\lim\limits_{n \to \infty} \left( \frac{\frac{1}{n}}{e^{\sqrt{\ln(n)}}
|
|
\frac{1}{2n\sqrt{\ln(n)}}} \right) \\
|
|
&= \lim\limits_{n \to \infty} \left( \frac{\frac{1}{n}n}{e^{\sqrt{\ln(n)}}\frac{n}{2n\sqrt{\ln(n)}}}
|
|
\right) \\
|
|
&= \lim\limits_{n \to \infty} \left( \frac{1}{\frac{e^{\sqrt{\ln(n)}}}{2\sqrt{\ln(n)}}} \right) \\
|
|
&= \lim\limits_{n \to \infty} \frac{1}{\infty} \\
|
|
\end{eqnarray*}
|
|
da $e^{\sqrt{\ln(n)}}$ schneller wächst als $2\sqrt{\ln(n)}$
|
|
|
|
$\Rightarrow \ln n = o(e^{\sqrt{\ln n}})$
|
|
|
|
\item
|
|
\begin{eqnarray*}
|
|
e^{\sqrt{\ln n}} &= o(n^{\varepsilon}) \text{ für alle } \varepsilon \in \mathbb{R}, \varepsilon > 0 \\
|
|
\lim\limits_{n \to \infty} \frac{e^{\sqrt{\ln n}}}{e^{\ln(n^{\varepsilon})}} =
|
|
\lim\limits_{n \to \infty} \frac{e^{\sqrt{\ln n}}}{e^{\varepsilon \cdot \ln n}} = 0
|
|
\end{eqnarray*}
|
|
|
|
Gilt für alle $\varepsilon > 0$, da $\ln n$ schneller wächst als $\sqrt{\ln n}$.
|
|
|
|
$\Rightarrow e^{\sqrt{\ln n}} = o(n^{\varepsilon})$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{document}
|
|
|