100 lines
3.0 KiB
TeX
100 lines
3.0 KiB
TeX
|
\documentclass[12pt,a4paper,german]{article}
|
||
|
\usepackage{url}
|
||
|
%\usepackage{graphics}
|
||
|
\usepackage{times}
|
||
|
\usepackage[T1]{fontenc}
|
||
|
\usepackage{ngerman}
|
||
|
\usepackage{float}
|
||
|
\usepackage{diagbox}
|
||
|
\usepackage[utf8]{inputenc}
|
||
|
\usepackage{geometry}
|
||
|
\usepackage{amsfonts}
|
||
|
\usepackage{amsmath}
|
||
|
\usepackage{cancel}
|
||
|
\usepackage{wasysym}
|
||
|
\usepackage{csquotes}
|
||
|
\usepackage{graphicx}
|
||
|
\usepackage{epsfig}
|
||
|
\usepackage{paralist}
|
||
|
\usepackage{tikz}
|
||
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
||
|
|
||
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
||
|
\def \name {Valentin Brandl} %
|
||
|
\def \matrikel {108018274494} %
|
||
|
\def \pname {Marvin Herrmann} %
|
||
|
\def \pmatrikel {108018265436} %
|
||
|
\def \gruppe {2 (Mi 10-12 Andre)}
|
||
|
\def \qname {Pascal Brackmann}
|
||
|
\def \qmatrikel {108017113834} %
|
||
|
\def \uebung {10} %
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
% DO NOT MODIFY THIS HEADER
|
||
|
\newcommand{\hwsol}{
|
||
|
\vspace*{-2cm}
|
||
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
||
|
\noindent \pmatrikel \quad \pname \\
|
||
|
\noindent \qmatrikel \quad \qname \\
|
||
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
%Import header
|
||
|
\hwsol
|
||
|
|
||
|
\section*{Aufgabe 10.3}
|
||
|
|
||
|
\begin{enumerate}[1.]
|
||
|
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
29^n \mod 10
|
||
|
\end{align*}
|
||
|
|
||
|
Primzahlen sind nur duchr 1 und sich selbst zeilbar
|
||
|
|
||
|
$29^n \equiv 9^n \mod 10$
|
||
|
|
||
|
\begin{align*}
|
||
|
9^1 &= 9 \\
|
||
|
9^2 &= 81 \\
|
||
|
9^3 &= 729 \\
|
||
|
9^4 &= 6561 \\
|
||
|
9^5 &= 59049 \\
|
||
|
9^6 &= 531441
|
||
|
\end{align*}
|
||
|
|
||
|
$\Rightarrow$ $9*9$ ergibt Zahl mit $1$ am Ende, $9*1$ ergibt Zahl mit $9$ am Ende.
|
||
|
|
||
|
$\Rightarrow$ Alle Potenzten von $9$ haben am Ende eine $9$ oder $1$ stehen
|
||
|
|
||
|
$\Rightarrow$ ist $n$ gerade $\Rightarrow$ Dez. Darstellung von $29^n$ endet auf $1$
|
||
|
$\Rightarrow$ ist $n$ ungerade $\Rightarrow$ Dez. Darstellung von $29^n$ endet auf $9$
|
||
|
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
11^{21} &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{10} 11^2) * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{10} 121) * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{10} 21) * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{5} 21^2) * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{5} 441) * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{5} 41) * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{2} 41^2) * 41 * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{2} 1681) * 41 * 11 &\mod 100 \\
|
||
|
\equiv (\prod\limits_{i = 1}^{2} 81) * 41 * 11 &\mod 100 \\
|
||
|
\equiv 81 * 81 * 41 * 11 &\mod 100 \\
|
||
|
\equiv 6561 * 41 * 11 &\mod 100 \\
|
||
|
\equiv 61 * 41 * 11 &\mod 100 \\
|
||
|
\equiv 2501 * 11 &\mod 100 \\
|
||
|
\equiv 1 * 11 &\mod 100 \\
|
||
|
\equiv 11 &\mod 100
|
||
|
\end{align*}
|
||
|
|
||
|
Die letzten beiden Dezimalstellen von $11^{21}$ sind $11$.
|
||
|
|
||
|
\end{enumerate}
|
||
|
|
||
|
\end{document}
|